Механизм образования активных форм пептидов
В регуляции гемостаза принимают участие пептиды. Это природные или синтетические соединения, молекулы которых построены из остатков аминокислот, соединенных между собой пептидными (амидными) связями C(O)–NH. Могут содержать в молекуле также неаминокислотную компоненту (напр., остаток углевода). Большинство биологически активных пептидов синтезируется в составе высокомолекулярных неактивных предшественников – препробелков, которые подвергаются посттрансляционной модификации различного типа [18]. Секретируемые белково-пептидные продукты синтезируются на мембраносвязанных рибосомах ЭПР. Благодаря наличию на N-конце препроформы нейропептида набора гидрофобных аминокислот, так называемой сигнальной последовательности, предшественник транслоцируется через мембрану ЭПР [1]. Внутри ЭПР сигнальная последовательность отщепляется от полипептидной цепи сигнальной пептидазой. Далее процессинг осуществляется в ходе передвижения молекул пропептидов по гранулярному ЭПР, комплексу Гольджи и в секреторных везикулах [38, 51, 62, 72].
Сначала под действием эндопептидаз, расщепляющих нейропептиды по синглетным и дуплетным остаткам основных аминокислот, образуются неактивные пептид, содержащие, как правило, “лишние” N- или, в основном, С-концевые остатки аминокислот. Удаление этих аминокислот в секреторных везикулах осуществляется соответственно аминопептидазо-В-подобным(и) и карбоксипептидазо-В-подобным(и) ферментами [14, 72].
Пептиды играют важную роль во многих процессах, происходящих в организме, например при свертывании крови и фибринолизе, оплодотворении, иммунном ответе (активации системы комплемента), гормональной регуляции. Уровень биологически активных пептидов в организме в значительной степени определяется активностью ферментов их обмена, к которым в частности принадлежат АПФ и КПN [21, 23, 30].
В связи с этим, большой интерес представляет изучение активности данных ферментов у онкологических больных в послеоперационном периоде, когда происходят существенные нарушения в системе гемостаза.
Вазоактивные пептиды и их роль в регуляции гемостаза
Наиболее важную роль в регуляции гемостаза играют вазоактивные пептиды ангиотензин и брадикинин [48].
Ангиотензины – пептиды, образующиеся в организме из ангиотензиногена, представляющего собой гликопротеид (альфа-2-глобулин) плазмы крови, синтезирующийся в печени. Под воздействием ренина (фермент, образующийся в юкстагломерулярном аппарате почек) полипептид ангиотензиноген, не обладающий прессорной активностью, гидролизуется, образуя ангиотензин I - биологически неактивный декапептид, легко подвергающийся дальнейшим преобразованиям. Под действием ангиотензинпревращающего фермента (АПФ), образующегося в легких, ангиотензин I превращается в октапептид – ангиотензин II, являющийся высокоактивным эндогенным прессорным соединением. Ангиотензин II - основной эффекторный пептид ренин-ангиотензин-альдостероновой системы. Он оказывает сильное сосудосуживающее действие, вызывает быстрое повышение АД. Пептид является стимулятором образования свободных радикалов, в частности супероксидных анионов, которые инактивируют NO, промотируют синтез пироксинитрита и снижает эффективность NO – опосредуемой сосудистой дилатации. Кроме того, вызывает агрегацию тромбоцитов, активирует ингибитор активатора плазминогена, способствуя формированию эндотелиальной дисфункции. Ангиотензин II стимулирует секрецию альдостерона, а в больших концентрациях - увеличивает секрецию антидиуретического гормона (повышение реабсорбции натрия и воды, гиперволемия) и вызывает симпатическую активацию. Все эти эффекты способствуют развитию гипертензии. Ангиотензин II быстро метаболизируется (период полураспада - 12 мин) при участии аминопептидазы А с образованием ангиотензина III и далее под влиянием аминопептидазы N - ангиотензина IV, обладающих биологической активностью. Ангиотензин III стимулирует выработку альдостерона надпочечниками, обладает положительной инотропной активностью. Ангиотензин IV, предположительно, участвует в регуляции гемостаза. Многолетние исследования РААС не только выявили важное значение этой системы в регуляции гемостаза, в развитии сердечно-сосудистой патологии, влиянии на функции органов-мишеней, среди которых наиболее важными являются сердце, кровеносные сосуды, почки и мозг, но и привели к созданию лекарственных средств, целенаправленно действующих на отдельные звенья РААС. Кроме того, на фоне повышенного уровня ангиотензинов I и II происходит образование ангиотензина-(1-7). Ангиотензин-(1-7) образуется из ангиотензина I под действием нейтральной эндопептидазы и из ангиотензина II под действием пролиловой эндопептидазы и является еще одним эффекторным пептидом РААС, оказывающим вазодилатирующее и натрийуретическое действие. Эффекты ангиотензина-(1-7) опосредованы через так называемые, не идентифицированные пока, АТх-рецепторы. Недавние исследования дисфункции эндотелия при артериальной гипертензии позволяют предположить, что кардиоваскулярные эффекты блокаторов ангиотензиновых рецепторов могут быть также связаны с модуляцией эндотелия и влиянием на продукцию оксида азота (NO). Полученные экспериментальные данные и результаты отдельных клинических исследований достаточно противоречивы. Возможно, на фоне блокады АТx-рецепторов, увеличивается эндотелийзависимый синтез и высвобождение оксида азота, что способствует вазодилатации, уменьшению агрегации тромбоцитов и снижению пролиферации клеток.