Отдельно следует рассмотреть вопрос о природе биостимулирующей активности низкоэнергетического лазерного излучения красной области спектра, которое получают главным образом с помощью гелий-неоновых лазеров. Благотворное влияние этого излучения было установлено в экспериментах на разных биологических объектах.
В 70-х годах были сделаны попытки объяснить явление лазерной биостимуляции особыми свойствами («биополе», «биоплазма»), которые якобы присущи живым организмам и придают специфическим характеристикам лазерного излучения биологическую значимость. В 1979 г. было выдвинуто предположение, что биологические эффекты низкоэнергетического лазерного излучения связаны с естественными процессами световой регуляции, наблюдающимися у животных. Молекулярная основа начальных этапов таких процессов лучше изучена у растений, для которых установлены не только сам факт фоторегуляции, но и химическая природа одного из первичных акцепторов света— фитохрома. Этот хромопротеид существует в двух формах, одна из которых поглощает свет вблизи 660 нм, а другая — 730 нм. Вследствие взаимопревращения этих форм при освещении меняется их количественное соотношение, что является пусковым механизмом в цепи процессов, приводящих в конечном счете к прорастанию семян, образованию почек, зацветанию растений и другим формообразовательным эффектам. Хотя не вызывает сомнения тот факт, что и у животных в основе таких явлений, как цикличность полового размножения или приуроченность ряда приспособительных реакций (линька и спячка млекопитающих, перелеты птиц) к определенным периодам года, лежат фоторегуляторные процессы, молекулярные механизмы их неясны
Представления о существовании в клетках животных определенной фоторегуляторной системы, возможно, напоминающей фитохромную систему растений, позволяют предположить, что биостимуляционная активность излучения гелий-неонового лазера является следствием простого совпадения его спектральных характеристик с областью поглощения компонентов этой системы. В этом случае следовало ожидать, что монохроматический красный свет некогерентных источников будет также биологически эффективным. Для экспериментальной проверки этого и других вопросов были необходимы чувствительные тесты, дающие количественные, хорошо воспроизводимые и точно измеряемые результаты. Подавляющее большинство исследований с гелий-неоновым лазером было проведено на животных или непосредственно на больных в условиях, не отвечающих этим требованиям.
При выборе подходящей модельной системы исходили из двух предпосылок: 1) клетки, развивающиеся или переживающие в условиях in vitro, представляют собой сравнительно простой тест-объект, позволяющий проводить точный учет условий воздействия и его результатов; 2) особого внимания заслуживает реакция поверхностной мембраны клеток, высокая чувствительность которого установлена ранее в опытах с низкоэнергетическим красным излучением рубинового лазера .
В исследованиях, проведенных Н. Ф. Гамалея и др. было изучено влияние излучения гелий-неонового лазера на поверхностную мембрану лимфоцитов, выделенных из крови человека. С этой целью оценивали способность лимфоцитов образовывать Е-розетки — взаимодействовать с эритроцитами барана. Установлено, что при низких дозах облучения (плотность мощности 0,1—0,5 Вт/м2, экспозиция 15 с), которые на полтора —два порядка ниже, чем используемые в клинических работах с гелий-неоновым лазером, происходит небольшое, но статистически достоверное повышение розеткообразовательной способности (в 1,2—1,4 раза) у облученных лимфоцитов по сравнению с контролем. Параллельно с цитомембранными изменениями повышалась функциональная активность лимфоцитов, в частности в 2— 6 раз возрастала их способность к делению, которую определяли в реакции бласттрансформации с фитогемагглютинином [Новиков Д. К., Новикова В. И., 1979], оценивая по накоплению клетками 3Н-тимидина. В экспериментах на лейкоцитах крови человека было установлено, что при воздействии на них излучения гелий-неонового лазера в таких же низких дозах в 1,5—2 раза усиливается фагоцитоз клетками кишечной палочки (как захватывание, так и переваривание). Излучение гелий-неонового лазера оказывало стимулирующее действие также на другие клетки. Так, в культуре опухолевых клеток мыши (L) задержка их роста в 1-е сутки после облучения сменялась его ускорением, которое было особенно заметно на 3—4-е сутки, когда количество делящихся клеток в 2 раза больше, чем в контроле